
6

Chapter 2. Your First SPDY App
I’m not gonna mess around in this book, so let’s jump right into a SPDY hello world

app:

app.get('/hello', function(req, res){
 res.render('hello', {
 title: 'Hello World!'
 });
});

If you are familiar with node.js, you will likely recognize that bit of code.

If you have never done node.js, that code is still pretty easy to follow thanks to a simple
DSL (Domain Specific Language). This DSL describes how to route an HTTP GET request
for the /hello resource. In this case, the response merely renders the hello template,
passing along a title parameter of "Hello World".

Now you might be thinking to yourself, "I plunked down good money to learn SPDY and
he’s talking about serving up HTTP with node.js?! How do I get a refund?" First off, all
sales are final—no refunds. Just kidding.

Actually, this is lesson #1:

Tip

Lesson #1: SPDY serves up HTTP applications. As we will see, it definitely
changes a few things here or there. The SPDY protocol builds on HTTP, it does not
replace it.

So is that it? Nothing else is needed to run a SPDY application?

2.1. OK I Lied
The hello world sample app is not really SPDY. Yet.

Your First SPDY App

7

The DSL that the sample app uses comes from the express.js framework. If you have ever
seen the Sinatra framework in Ruby, then you understand what express.js is meant for—a
simple way to write HTTP applications.

So what do we need to do to SPDY-ize it?

Two things. We need an adapter layer, express-spdy in this case, and some
configuration:

// Require necessary modules
var express = require('express-spdy')
 , fs = require('fs');

// Create an instance of an application
// server -- SPDY-ized
var app = express.createServer({
 key: fs.readFileSync('keys/spdy-key.pem'),
 cert: fs.readFileSync('keys/spdy-cert.pem'),
 ca: fs.readFileSync('keys/spdy-csr.pem'),
 NPNProtocols: ['spdy/2', 'http/1.1']
}

app.get('/hello', function(req, res){
 res.render('hello', {
 title: 'Hello World!'
 });
});

In a regular express.js application, the express variable would come from requiring the
express module. The express-spdy module takes the express.js framework and adds a
few features to it—kinda like SPDY adds a few things to HTTP.

The API for express-spdy is unchanged from express.js, including the call to
createServer that returns an express.js application object. Here, we are returning a
SPDY-ized version of the express.js application object.

The first three configuration options that are passed to createServer — key , cert ,
and ca — are SSL (Secure Socket Layer) options. In fact, those options come straight
out of express.js. They are, of course, not required in express.js, but with SPDY, SSL is
mandatory. We will cover SSL in depth in Chapter 8, SPDY and SSL.

Your First SPDY App

8

Tip

Lesson #2: SPDY is served over SSL. In an age where session hijacking is trivial
thanks to tools like Firesheep, all non-trivial applications should be served with
SSL. There is a performance hit by using SSL, but SPDY acknowledges this as a
price of writing serious, modern applications.

The next configuration option, NPNProtocols , is the real difference between an express.js
app and an express-spdy app. NPN, or Next Protocol Negotiation, is a relatively new
feature of SSL. NPN is a vehicle for web servers to communicate to browsers the protocols
that they can speak.

In this case, we are advertising that our hello world application can speak both spdy/2

(SPDY, version 2) and http/1.1 . Browsers that do not understand NPN or SPDY can still
make regular HTTP requests of our hello world server.

But browsers that understand NPN and SPDY, such as Google’s Chrome, will speak
SPDY to the server. And it will make a huge difference.

Let’s find out how…

2.2. Without SPDY
As we explore SPDY, we will need to be able to compare it with vanilla HTTP and, later,
alternative protocols. The Speed Tracer extension for Chrome produces some very nice
graphs for just this purpose.

The hello world app without SPDY looks like this in Speed Tracer:

Your First SPDY App

11

Note

Unless otherwise stated, all examples in this book will include a one-way latency
of 50ms / round trip latency of 100ms.

What this tells us is that the biggest problem facing our hello world app is network
latency.

Surely SPDY can help! Let’s see what SPDY is capable of…

2.3. The SPDY Difference
After adding require('express-spdy') and NPNProtocols: ['spdy/2',

'http/1.1'] to convert the express.js app to express-spdy, Speed Tracer reports:

Your First SPDY App

13

that increases the compressed frame beyond the size of the original. Once we hit
the Advanced Topics section, we will see why this is and why the penalty is very,
very much worth the price.

Mostly, the slower response time boils down to an infallible truism…

2.4. Hello World Applications Are Silly
The hello world application in this book is no exception.

SPDY is overkill for simple sites like this hello world application, documentation
repositories, or marketing sites. But if you are planning on doing anything more complex
than this, SPDY will give you a huge win.

Tip

Lesson #3: SPDY is not optimized for very small applications.

In the next chapter, we will get our first taste for the power of SPDY as we add some
images and simple Javascript to our hello world application.

In this chapter, we saw our first SPDY application. Happily, SPDY apps are not that much
different than the HTTP apps with which web developers are familiar. To be sure there
will be much to learn about writing SPDY apps, but at least we do not have to start over
completely.

We also learned that SPDY is served over SSL. Always. Finally, we found that SPDY is
definitely not meant for simple hello world . To find out what kind of applications SPDY
is good for, keep reading. Things are going to get a lot more interesting.

